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Lithium enolates are among the important reagents
in modern organic synthesis. In ether solvents important
in synthesis lithium enolates are known to exist in a
variety of ion-pair aggregates. The role of these different
aggregates in reactions of enolates is still almost un-
known. In this paper we report on the aggregation state
of the lithium enolate (LiSIBP) derived from p-(phenyl-
sulfonyl)isobutyrophenone (SIBP) and the kinetics of an
alkylation reaction.?
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The Amax of the lithium salt of p-phenylisobutyrophe-
none is close to that of the ketone, and determination of
the ion pair acidity (defined in terms of the transmeta-
lation equilibrium 1 with the pK’s per hydrogen relative
to fluorene = 22.9) required the single indicator tech-
nique in which the equilibrium constant is determined
by the change in absorbance of the indicator on adding a
known amount of substrate. Nevertheless, the lithium
enolate was found recently to be primarily monomer and
tetramer in THF.*

RH+R ™M "=R"M"+RH (1)

LiSIBP has Ay, at much longer wavelength and could
be studied readily by the double indicator technique in
which the equilibrium constant is determined by absor-
bance measurements of the carbanion salt of both sub-
strate and indicator. The equilibrium ion-pair acidity
measured against the lithium salt of 7-phenyl-7H-benzo-
[c]fluorene (InH; pKi,uy = 14.88) in THF gives an almost
linear plot of pKj;, vs the formal concentration of LiSIBP;
the slope over the concentration range 3 x 1075—3 x 108
M corresponds to an average aggregation number of 1.8,5
indicating that at these concentrations LiSIBP is mostly
dimeric with only a small amount of monomer.

In previous studies we have shown that different
aggregation states of organoalkali compounds often have
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Figure 1. Experimental pK compared to the formal concen-
tration of LiSIBP, [{LiSIBP}]. Circles are experimental data.
The solid curve is the theoretical pK,, plot derived for Scheme
1 (Ko = Keg(0.5 + 0.5(1 + 8K [{LiSIBP}1)*?)° using pKsipp =
14.69, pKinu = 14.88, and K4 = 5.0 x 10* ML,

significantly different absorption spectra.® Dilution of
LiSIBP from 3 x 1073 to 5 x 107° M caused A.x to shift
gradually from 390 to 394 nm. Singular value decom-
position (SVD) analysis® revealed the presence of two
spectroscopically distinct species (singular values S; =
16.66 and S, = 0.24). Transformation gave the spectra
of the monomer (L. = 409 nm) and dimer (Amax = 390
nm).” All measured spectra could be properly recon-
structed using the spectra of these components and gave
a dimerization constant K4 = (5.0 & 0.1) x 10* M~L. By
use of this value and the acidity equilibria, the pK of
monomeric SIBP, pKspp, derived for Scheme 1 is 14.69.5°

Scheme 1

K
SIBP + Liln == (LiSIBP), + InH

K
2 (LiSIBP), == (LiSIBP),

The theoretical aggregation plot of LiSIBP calculated
using these values provides an excellent fit to the
experimental data (Figure 1).

Initial rates (up to 10% completion) of the reaction of
LiSIBP with excess p-t-butylbenzyl bromide (RX) were
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Figure 2. Each square is a separate kinetic run showing the
initial rate of reaction with p-tert-butylbenzyl bromide as a
function of the formal concentration of LiSIBP. The slope of
the line shown corresponds to (ny/n,) and has the value 0.50
+ 0.04.

measured in THF at 25.0 °C by following the decrease
in the absorbance of LiSIBP at 390 nm. Initial formal
concentrations of LiSIBP were varied from 7 x 10~*to 5
x 10~3 M; in this region monomer ranges from 11 to 4.5%
of the total enolate. The observed data summarized in
Figure 2 fit a straight line of slope 0.50 + 0.04. For a
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reaction unimolecular in the alkylating agent, the slope
at any point in such a figure corresponds to (ni/n.) where
ny is the average kinetic aggregation number.!® In this
concentration region n, = 1.87; hence, ny = 0.94 £+ 0.07.
That is, reaction occurs via the monomeric ion pair even
in the presence of a large excess of dimer. Note that the
measured value of Ky means that at concentrations used
in synthesis of several tenths molar the lithium enolate
is still almost 1% monomer and the monomer undoubt-
edly is still primarily involved in the alkylation reaction.
This result compares with the alkylation in THF of the
cesium enolate of p-phenylisobutyrophenone and methyl
tosylate which also involves the monomeric enolate ion
pairs in an equilibrium dominated by aggregates.l
These results show that a proposed mechanism of reac-
tion of metal enolate aggregates!! does not occur gener-
ally and may, in fact, have limited applicability.

To identify the reaction products, some kinetic runs
were allowed to go to completion; THF was evaporated
and the residue was taken into a deuterated solvent. 'H
and 13C NMR spectra of corresponding solutions are in
agreement with formation of primarily the C-alkylated
product. Similar results were observed when reactions
were quenched with benzoic acid after 10% completion.
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